metabelian, supersoluble, monomial
Aliases: C62.32C23, D6⋊C4.5S3, Dic3⋊C4⋊10S3, (C2×C12).190D6, D6⋊Dic3.5C2, (C22×S3).8D6, C6.24(C4○D12), (C2×Dic3).11D6, Dic3⋊Dic3⋊32C2, C6.60(D4⋊2S3), (C6×C12).217C22, C6.25(Q8⋊3S3), C32⋊5(C42⋊2C2), C2.8(D6.4D6), C3⋊3(C23.8D6), C2.10(D12⋊S3), (C6×Dic3).9C22, C2.11(D6.D6), (C2×C4).90S32, (C3×D6⋊C4).5C2, C22.89(C2×S32), C3⋊5(C4⋊C4⋊S3), (S3×C2×C6).8C22, (C3×Dic3⋊C4)⋊7C2, (C4×C3⋊Dic3)⋊13C2, (C3×C6).19(C4○D4), (C2×C6).51(C22×S3), (C2×C3⋊Dic3).118C22, SmallGroup(288,510)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.32C23
G = < a,b,c,d,e | a6=b6=c2=1, d2=b3, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=a3c, ece-1=b3c, ede-1=b3d >
Subgroups: 458 in 135 conjugacy classes, 44 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C3×S3, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×C6, C42⋊2C2, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C62, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C4⋊C4, C6×Dic3, C2×C3⋊Dic3, C6×C12, S3×C2×C6, C23.8D6, C4⋊C4⋊S3, D6⋊Dic3, Dic3⋊Dic3, C3×Dic3⋊C4, C3×D6⋊C4, C4×C3⋊Dic3, C62.32C23
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, C42⋊2C2, S32, C4○D12, D4⋊2S3, Q8⋊3S3, C2×S32, C23.8D6, C4⋊C4⋊S3, D12⋊S3, D6.D6, D6.4D6, C62.32C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 93 11 91 9 95)(8 94 12 92 10 96)(19 28 23 26 21 30)(20 29 24 27 22 25)(31 42 33 38 35 40)(32 37 34 39 36 41)(43 49 45 51 47 53)(44 50 46 52 48 54)(55 61 57 63 59 65)(56 62 58 64 60 66)(67 78 69 74 71 76)(68 73 70 75 72 77)(79 88 83 86 81 90)(80 89 84 87 82 85)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 55)(7 51)(8 52)(9 53)(10 54)(11 49)(12 50)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 69)(22 70)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 85)(38 86)(39 87)(40 88)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)
(1 41 16 34)(2 40 17 33)(3 39 18 32)(4 38 13 31)(5 37 14 36)(6 42 15 35)(7 75 91 68)(8 74 92 67)(9 73 93 72)(10 78 94 71)(11 77 95 70)(12 76 96 69)(19 49 26 47)(20 54 27 46)(21 53 28 45)(22 52 29 44)(23 51 30 43)(24 50 25 48)(55 87 63 80)(56 86 64 79)(57 85 65 84)(58 90 66 83)(59 89 61 82)(60 88 62 81)
(1 23 4 20)(2 24 5 21)(3 19 6 22)(7 86 10 89)(8 87 11 90)(9 88 12 85)(13 27 16 30)(14 28 17 25)(15 29 18 26)(31 54 34 51)(32 49 35 52)(33 50 36 53)(37 45 40 48)(38 46 41 43)(39 47 42 44)(55 77 58 74)(56 78 59 75)(57 73 60 76)(61 68 64 71)(62 69 65 72)(63 70 66 67)(79 94 82 91)(80 95 83 92)(81 96 84 93)
G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,56)(2,57)(3,58)(4,59)(5,60)(6,55)(7,51)(8,52)(9,53)(10,54)(11,49)(12,50)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96), (1,41,16,34)(2,40,17,33)(3,39,18,32)(4,38,13,31)(5,37,14,36)(6,42,15,35)(7,75,91,68)(8,74,92,67)(9,73,93,72)(10,78,94,71)(11,77,95,70)(12,76,96,69)(19,49,26,47)(20,54,27,46)(21,53,28,45)(22,52,29,44)(23,51,30,43)(24,50,25,48)(55,87,63,80)(56,86,64,79)(57,85,65,84)(58,90,66,83)(59,89,61,82)(60,88,62,81), (1,23,4,20)(2,24,5,21)(3,19,6,22)(7,86,10,89)(8,87,11,90)(9,88,12,85)(13,27,16,30)(14,28,17,25)(15,29,18,26)(31,54,34,51)(32,49,35,52)(33,50,36,53)(37,45,40,48)(38,46,41,43)(39,47,42,44)(55,77,58,74)(56,78,59,75)(57,73,60,76)(61,68,64,71)(62,69,65,72)(63,70,66,67)(79,94,82,91)(80,95,83,92)(81,96,84,93)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,93,11,91,9,95)(8,94,12,92,10,96)(19,28,23,26,21,30)(20,29,24,27,22,25)(31,42,33,38,35,40)(32,37,34,39,36,41)(43,49,45,51,47,53)(44,50,46,52,48,54)(55,61,57,63,59,65)(56,62,58,64,60,66)(67,78,69,74,71,76)(68,73,70,75,72,77)(79,88,83,86,81,90)(80,89,84,87,82,85), (1,56)(2,57)(3,58)(4,59)(5,60)(6,55)(7,51)(8,52)(9,53)(10,54)(11,49)(12,50)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,69)(22,70)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,85)(38,86)(39,87)(40,88)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96), (1,41,16,34)(2,40,17,33)(3,39,18,32)(4,38,13,31)(5,37,14,36)(6,42,15,35)(7,75,91,68)(8,74,92,67)(9,73,93,72)(10,78,94,71)(11,77,95,70)(12,76,96,69)(19,49,26,47)(20,54,27,46)(21,53,28,45)(22,52,29,44)(23,51,30,43)(24,50,25,48)(55,87,63,80)(56,86,64,79)(57,85,65,84)(58,90,66,83)(59,89,61,82)(60,88,62,81), (1,23,4,20)(2,24,5,21)(3,19,6,22)(7,86,10,89)(8,87,11,90)(9,88,12,85)(13,27,16,30)(14,28,17,25)(15,29,18,26)(31,54,34,51)(32,49,35,52)(33,50,36,53)(37,45,40,48)(38,46,41,43)(39,47,42,44)(55,77,58,74)(56,78,59,75)(57,73,60,76)(61,68,64,71)(62,69,65,72)(63,70,66,67)(79,94,82,91)(80,95,83,92)(81,96,84,93) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,93,11,91,9,95),(8,94,12,92,10,96),(19,28,23,26,21,30),(20,29,24,27,22,25),(31,42,33,38,35,40),(32,37,34,39,36,41),(43,49,45,51,47,53),(44,50,46,52,48,54),(55,61,57,63,59,65),(56,62,58,64,60,66),(67,78,69,74,71,76),(68,73,70,75,72,77),(79,88,83,86,81,90),(80,89,84,87,82,85)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,55),(7,51),(8,52),(9,53),(10,54),(11,49),(12,50),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,69),(22,70),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,85),(38,86),(39,87),(40,88),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96)], [(1,41,16,34),(2,40,17,33),(3,39,18,32),(4,38,13,31),(5,37,14,36),(6,42,15,35),(7,75,91,68),(8,74,92,67),(9,73,93,72),(10,78,94,71),(11,77,95,70),(12,76,96,69),(19,49,26,47),(20,54,27,46),(21,53,28,45),(22,52,29,44),(23,51,30,43),(24,50,25,48),(55,87,63,80),(56,86,64,79),(57,85,65,84),(58,90,66,83),(59,89,61,82),(60,88,62,81)], [(1,23,4,20),(2,24,5,21),(3,19,6,22),(7,86,10,89),(8,87,11,90),(9,88,12,85),(13,27,16,30),(14,28,17,25),(15,29,18,26),(31,54,34,51),(32,49,35,52),(33,50,36,53),(37,45,40,48),(38,46,41,43),(39,47,42,44),(55,77,58,74),(56,78,59,75),(57,73,60,76),(61,68,64,71),(62,69,65,72),(63,70,66,67),(79,94,82,91),(80,95,83,92),(81,96,84,93)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H | 12I | ··· | 12N |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 12 | 2 | 2 | 4 | 2 | 2 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 4 | ··· | 4 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | S3 | D6 | D6 | D6 | C4○D4 | C4○D12 | S32 | D4⋊2S3 | Q8⋊3S3 | C2×S32 | D12⋊S3 | D6.D6 | D6.4D6 |
kernel | C62.32C23 | D6⋊Dic3 | Dic3⋊Dic3 | C3×Dic3⋊C4 | C3×D6⋊C4 | C4×C3⋊Dic3 | Dic3⋊C4 | D6⋊C4 | C2×Dic3 | C2×C12 | C22×S3 | C3×C6 | C6 | C2×C4 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 6 | 8 | 1 | 3 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of C62.32C23 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
4 | 9 | 0 | 0 | 0 | 0 |
7 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 6 | 10 |
7 | 6 | 0 | 0 | 0 | 0 |
9 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 4 |
0 | 0 | 0 | 0 | 9 | 2 |
8 | 3 | 0 | 0 | 0 | 0 |
5 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[4,7,0,0,0,0,9,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,6,0,0,0,0,3,10],[7,9,0,0,0,0,6,6,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,11,9,0,0,0,0,4,2],[8,5,0,0,0,0,3,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,0,8] >;
C62.32C23 in GAP, Magma, Sage, TeX
C_6^2._{32}C_2^3
% in TeX
G:=Group("C6^2.32C2^3");
// GroupNames label
G:=SmallGroup(288,510);
// by ID
G=gap.SmallGroup(288,510);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,120,422,219,58,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=b^3,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^3*c,e*c*e^-1=b^3*c,e*d*e^-1=b^3*d>;
// generators/relations